Temperature Compensation for Radiometric Correction of Terrestrial LiDAR Intensity Data

نویسندگان

  • Angus F. C. Errington
  • Brian L. F. Daku
چکیده

Correction of terrestrial Light Detection and Ranging (LiDAR) intensity data has been increasingly studied in recent years. The purpose is to obtain additional insight into the scanned environment that is not available from the geometric information alone. Radiometric correction, as the name implies, corrects the received intensity to standard reflectance values in the range of (0, 1). This correction typically compensates for the dependence of angle and distance. This paper presents an additional compensation for temperature that may be necessary for some LiDAR instruments such as the Faro Focus3D X 330 laser scanner. It is also shown that temperature compensation is not necessary for the Riegl VZ–400. Another important contribution of this work is the verification of a previously published radiometric correction in different environments. The correction was applied to two different Terrestrial Laser Scanner (TLS) instruments: a Faro Focus3D X 330 and Riegl VZ-400. Overall, the VZ-400, without temperature compensation, produced better results with a Root Mean Square (RMS) of the standard deviation of error being 0.053 and a RMS of the mean error of 0.036 compared to 0.069 and 0.046 for the Faro Focus3D X 330. It was found, for the case of the Faro device, that the temperature of the instrument played an important role in the accuracy of the results. The proposed temperature compensation method improved the RMS standard deviation of the error by 1.4 times and the RMS of the error by 2.6 times, compared to the uncompensated results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration

In addition to precise 3D coordinates, most light detection and ranging (LIDAR) systems also record "intensity", loosely defined as the strength of the backscattered echo for each measured point. To date, LIDAR intensity data have proven beneficial in a wide range of applications because they are related to surface parameters, such as reflectance. While numerous procedures have been introduced ...

متن کامل

Geometric Calibration and Radiometric Correction of LiDAR Data and Their Impact on the Quality of Derived Products

LiDAR (Light Detection And Ranging) systems are capable of providing 3D positional and spectral information (in the utilized spectrum range) of the mapped surface. Due to systematic errors in the system parameters and measurements, LiDAR systems require geometric calibration and radiometric correction of the intensity data in order to maximize the benefit from the collected positional and spect...

متن کامل

Accuracy Enhancement of Terrestrial Mobile Lidar Data Using Theory of Assimilation

Even though the terrestrial LiDAR mobile mapping system is fairly new, it has been rapidly ingested by end users of wide spectrum of disciplines. As more and more applications are enjoying the potential of terrestrial LiDAR systems, refining quality and accuracy of LiDAR data is becoming increasingly critical. While the average geo-referencing accuracy of terrestrial LiDAR systems currently rea...

متن کامل

Empirical Radiometric Normalization of Road Points from Terrestrial Mobile Lidar System

Lidar data provide both geometric and radiometric information. Radiometric information is influenced by sensor and target factors and should be calibrated to obtain consistent energy responses. The radiometric correction of airborne lidar system (ALS) converts the amplitude into a backscatter cross-section with physical meaning value by applying a model-driven approach. The radiometric correcti...

متن کامل

Radiometric Block Adjustment for Multi-Strip Airborne Waveform Lidar Data

The airborne lidar system has been shown to be an effective and reliable method for spatial data collection. Lidar records the coordinates of point and intensity, dependent on range, incident angle, reflectivity of object, atmospheric condition, and several external factors. To fully utilize the intensity of a lidar system, several researchers have proposed correction models from lidar equation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017